
Linear algebra and analytic geometry. 

 

Practice lessons. № 3 The determinants of the second and third order and their calculation. 

Formula Cramer. 

 

1. Home work: [3], №№1-32, p.123-127 , №№38-50, p.129-130 

 

2. Examples: 

 

2.1. Calculate the determinant of the n-th order: 

        а) leading to a triangular form. 

        б)  Spreading out on the elements of any row or column on the properties of determinants, we 

obtain (n-1) zeros in this row or column. 

Solution:  
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2.2.  Calculate linear combinations of A and B. 
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2.3 Calculate the AB and BA. Check whether equal to the product of these matrices.   
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2.4 Find the inverse matrix А
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2.5. Find the rank of matrix 
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Solution:   

а) Gauss method 
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б) by elementary transformations 
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в) fringing by minors (методом окаймляющих миноров). 
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Formula Cramer. 

 

Solve the system of equations with the method of Kramer 

 

We consider a system of three equations with three unknowns 
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Solution of the problem: 
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